Asymptotic behavior of alternative Jensen and Jensen type functional equations
نویسندگان
چکیده
In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive and quadratic mappings on restricted domains. In this paper we improve our bounds and thus our results obtained, in 2003 for Jensen type mappings and establish new theorems about the Ulam stability of additive mappings of the second form on restricted domains. Besides we introduce alternative Jensen type functional equations and investigate pertinent stability results for these alternative equations. Finally, we apply our recent research results to the asymptotic behavior of functional equations of these alternative types. These stability results can be applied in stochastic analysis, financial and actuarial mathematics, as well as in psychology and sociology. 2005 Elsevier SAS. All rights reserved. * Corresponding author. E-mail addresses: [email protected] (J.M. Rassias), [email protected] (M.J. Rassias), [email protected] (M.J. Rassias). URL: http://www.primedu.uoa.gr/~jrassias/. 0007-4497/$ – see front matter 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.bulsci.2005.02.001 546 J.M. Rassias, M.J. Rassias / Bull. Sci. math. 129 (2005) 545–558
منابع مشابه
Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملAsymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of additive functional equations of two forms: of “Jensen” and “Jensen type” in the framework of multi-normed spaces. We therefore provide a link between multi-normed spaces and functional equations. More precisely, we establish the Hyers-Ulam stability of functional equations of these types for mappings from Abelian groups into multi-norme...
متن کاملSTABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES
In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.
متن کامل